
asyncframes Documentation
Release 2.2.0

Sebastian Klaassen

Feb 18, 2019

Contents

1 Introduction 3
1.1 Programming with asyncframes . 3
1.2 Parallel Programming with asyncframes . 6
1.3 API . 10

2 Indices and tables 17

Python Module Index 19

i

ii

asyncframes Documentation, Release 2.2.0

Version asyncframes v1 asyncframes v2
Docs
Download
Source
Status
License

asyncframes is a coroutine library for Python and a reference implementation of the Frame Hierarchy Programming
Model (FHM). The goal of FHM is to help programmers design clean and scalable parallel programs. The main
features of asyncframes are:

• Hierarchical code design

• Inherent and scalable parallelism

• Architecture independence

• Extensibility through frame classes (a class whose lifetime is bound to the execution of a frame)

Contents 1

https://asyncframes.readthedocs.io/en/master/
https://pypi.org/project/asyncframes/1.1.1/
https://pypi.org/project/asyncframes/
https://github.com/RcSepp/asyncframes/tree/v1
https://github.com/RcSepp/asyncframes/tree/master
https://travis-ci.org/RcSepp/asyncframes
https://coveralls.io/github/RcSepp/asyncframes?branch=v1
https://travis-ci.org/RcSepp/asyncframes
https://coveralls.io/github/RcSepp/asyncframes?branch=master
https://opensource.org/licenses/MIT
https://opensource.org/licenses/MIT

asyncframes Documentation, Release 2.2.0

2 Contents

CHAPTER 1

Introduction

In the Frame Hierarchy Programming Model (FHM) a program is represented as a dynamic tree of frames. A frame is a
suspendable function (a coroutine) with an object oriented context (the frame class) that only exists until the function
returns. Frames can be used to represent both temporal processes (using the coroutine) and physical or conceptual
objects (using the frame class).

Each FHM program has exactly one root frame. The root frame can recursively spawn child frames. Each child frame
runs in parallel unless it’s awaiting another frame or an awaitable event. Frames of type Frame run on a single thread.
They use cooperative multitasking to simulate parallelism. Frames of type PFrame run on any of the threads available
in the event loop’s thread pool. Frame and PFrame are frame classes. They can be sub-classed to create specialized
frame classes with encapsulated data.

1.1 Programming with asyncframes

1.1.1 Frame Hierarchy Model vs. Object Oriented Programming

The most common form of Object Oriented Programming (OOP) is class-oriented programming. In this form programs
are designed using classes and objects. A class defines the structure of a conceptual entity. After a class is defined,
the programmer can create one or more objects of that entity. These objects are also known as instances of the class.

The state and behavior of objects are defined within the class by creating variables and methods respectively. Different
objects of the same class can contain different data (i.e. values), but their state (i.e. variables) and behavior (i.e.
methods) are the same. Dynamic languages, like Python, allow manipulation of state and behavior at runtime.

In the Frame Hierarchy Model (FHM) programs are designed using frame classes, frame instances and frames.
The frame class defines static state and behavior, similar to the class in OOP. The frame defines dynamic state and
behavior, that is specific to a single instance of a frame class. After a frame is defined, the programmer can create one
or more frame instances of it, similar to objects in OOP.

Any class deriving from one of the fundamental frame classes Frame, PFrame or DFrame is by definition a frame
class. Frame instances are created by instantiating frames and frames are created by instantiating frames classes.
Frames can be created without any general state or behavior by directly instantiating one of the fundamental frame
classes.

3

asyncframes Documentation, Release 2.2.0

class ButtonFrame(asyncframes.Frame):
"""An example frame class."""

@ButtonFrame
async def button_frame():

"""An example frame."""

@Frame
async def helper_frame():

"""An example frame without a frame class."""

button = button_frame(): # An example frame instance.

Note: The differences between Frame, PFrame and DFrame are explained in chapter Parallel Programming with
asyncframes.

In a way, FHM adds another layer between classes and objects. The additional third layer may seem to add complexity
to the programming model, but it can be strictly separated by the following principle:

Tip: State and behavior that is general enough to be applicable to different programs should be defined via frame
classes. State and behavior that is specific to a single program should be defined via frames.

Ideally most frame classes should be defined in separate Python packages, so they can be reused across projects (see
examples/frame_libraries in the git repository).

1.1.2 Example

To illustrate the differences between frame classes, frame instances and frames, let’s consider a simple use case:

We would like to create a button in a user interface that prints the line “Hello World!” when clicked.

Creating frame classes for Gtk.Window and Gtk.Button

First we create a frame class that represents a GTK window:

1 class GtkFrame(FrameMeta, type(GObject)):
2 pass
3

4 class Window(Frame, Gtk.Window, metaclass=GtkFrame):
5 def __init__(self, *args, **kwargs):
6 Frame.__init__(self)
7 Gtk.Window.__init__(self, *args, **kwargs)
8 self.connect("destroy", lambda _: self.remove())

The class Window is a frame class because it derives from asyncframes.Frame. In line 8, we connect the
window’s destroy event to the asyncframes.Awaitable.remove() method. This will remove the frame when
the user closes the window. The rest of this code snippet is required to enable multiple inheritance in Python:

Lines 1 and 2 declare a metaclass that derives from both the metaclass of Frame (i.e. FrameMeta) and Gtk.
Window (i.e. type(GObject)). Lines 6 and 7 call the constructors of both base classes. Note that we are pass
through any arguments of the window frame class to the GTK window. We will use this later to pass a title string to
the window.

4 Chapter 1. Introduction

asyncframes Documentation, Release 2.2.0

Now let’s create another frame class for buttons:

1 class Button(Frame, Gtk.Button, metaclass=GtkFrame):
2 def __init__(self, *args, **kwargs):
3 Frame.__init__(self)
4 Gtk.Button.__init__(self, *args, **kwargs)
5 find_parent(Window).add(self)
6

7 self.clicked = Event("Button.clicked")
8 def send_clicked_event(*args):
9 self.clicked.send(args)

10 self.connect("clicked", send_clicked_event)

The Button frame class derives from both Frame and Gtk.Button. After calling the constructors of both base
classes, we add the button to its window. Remember that any FHM program consists of a hierarchy of frames. To find
the window this button belongs to, we use the function asyncframes.find_parent(parenttype) to search
the hierarchy for the closest ancestor of type Window. Finally, in lines 7 through 10, we create an asyncframes.
Event and connect it to the clicked event of the GTK button.

Creating a FHM program using Window and Button

Let’s use Window and Button frame classes to create a simple GUI application:

1 @Window(title="Button Example")
2 async def main_frame(self):
3 @Button("Click Here")
4 async def button_frame(self):
5 self.show()
6 while True:
7 await self.clicked
8 print("Hello World!")
9 button = button_frame()

10

11 self.set_default_size(280, 40)
12 self.set_border_width(8)
13 self.show()
14 await hold()
15

16 loop = glib_eventloop.EventLoop()
17 loop.run(main_frame)

We start by creating a main frame of type Window in lines 1 and 2. Since our Window frame class is forwarding
all arguments to the underlying Gtk.Window, we can pass the window title when creating the frame. The self
argument is optional in asyncframes. It refers to the frame just like the self argument on a Python method.

In lines 11 to 13 we use self to call methods of the Gtk.Window. Line 11 resizes the window, line 12 adds padding
around our button and line 13 displays the window.

Line 14 is important to keep the main_frame from going out of scope. Frame classes are removed when they go out
of scope and the window is part of our main_frame. Accordingly, without await hold() our application would
close the window and exit immediately.

Note: await hold() is semantically equivalent to await sleep(sys.float_info.max)

The last thing to define is our button. FHM allows us to create the button and define its entire life cycle in a single
block of code (lines 3 to 9). If we were to completely remove all code related this button in the future, we would only

1.1. Programming with asyncframes 5

asyncframes Documentation, Release 2.2.0

need to remove or comment-out these lines. Lines 3 to 8 define the button frame and line 9 creates a frame instance.

Note: We define button_frame inside main_frame to emphasize that this button is a child of the window in the
frame hierarchy. This is not a requirement. The button’s position in the hierarchy only depends on where the frame
instance is created (line 9). Accordingly, it wouldn’t affect the application if we defined button_frame outside
main_frame.

Similar to the window title, we pass the button text as an argument when creating the button frame (line 3).

Lines 5 to 8 define the behavior of the button. In our case we start by making the button visible (line 5) and then we
print “Hello World!” (line 8) every time (line 6) the button is clicked (line 7).

Running the example

To run an FHM application that uses GTK, we need to invoke the main frame from an eventloop that is implemented
on top of the GLib event system:

1 loop = glib_eventloop.EventLoop()
2 loop.run(main_frame)

This example requires asyncframes and GTK for Python:

pip install asyncframes pygobject

The created window will look like this:

Whenever the button is pressed, “Hello World!” will be displayed in the output terminal or console.

1.2 Parallel Programming with asyncframes

Parallel programming is to write fragments of code that can be executed in parallel. It is used to either speed up code
execution or to circumvent blocking operations.

1.2.1 Types of Parallelism

There are many types of parallelism. For asyncframes we distinguish the following three types:

1. Cooperative multitasking

2. Shared memory parallelism

3. Distributed memory parallelism

If you understand the differences between these types of parallelism and know about the implications of their imple-
mentation in Python, feel free to move on to the next section.

6 Chapter 1. Introduction

asyncframes Documentation, Release 2.2.0

Cooperative multitasking does not actually execute code in parallel. Instead, It allows a program to pause the execution
of a function and execute other parts of the program before returning. In Python, such functions can be implemented
using generators (functions that use the yield keyword) or coroutines (functions defined using async def, that
can use the await keyword). We will only focus on coroutines here. By using coroutines on top of an event loop,
we can implement a parallel programming environment, where the eventloop acts as the task scheduler and individual
coroutines act as tasks that periodically yield execution using the await keyword. Since this environment never
actually switches between CPU threads, it doesn’t come with any of the usual caveats of parallel programming, like
nondeterministic execution, dead locks and race conditions. However, cooperative multitasking doesn’t run faster than
serial code and blocking a single coroutine will block the entire program.

Shared memory parallelism is employed when separate execution contexts (i.e. threads) execute code in parallel that
accesses a shared pool of memory. In modern computers this is utilized by running separate CPU cores or hardware
threads in parallel. In contrast to cooperative multitasking, this type of parallelism does run code in parallel. It therefore
requires much more careful code design to avoid dead locks and race conditions, while rewarding the programmer with
parallel speedup and non-blocking execution. In Python shared memory parallelism is limited by the Global Interpreter
Lock (GIL). The GIL is a mechanism that only allows one thread to interpret Python code at a time. This prohibits
parallel speedups, but it doesn’t affect the non-blocking behavior of multi-threaded Python code. Since this limitation
is not part of the Python standard, it may not apply to all Python distributions and it may even be removed in a future
release of CPython. In terms of the Frame Hierarchy Programming Model, we assume that shared memory parallelism
can result in faster code, and it should be preferred to cooperative multitasking for thread-safe frames.

Distributed memory parallelism is employed when threads cannot access memory of other threads without using spe-
cialized memory transfer mechanisms. In modern computers such threads are known as processes. They can either run
on the same machine, using memory separated by the operating system, or on physically separate machines. In either
case we should assume inter-process communication to be much slower than interactions between shared memory
threads. The main advantage of distributed memory parallelism is that it is much more scalable than shared memory
parallelism. A modern supercomputer, for example, has thousands of compute nodes with physically separated mem-
ory, while the CPUs on each node only employ a small number of hardware threads. In Python multi-processing runs
multiple instances of the program. Each process runs a separate Python interpreter, which allows speedup through par-
allel execution without being affected by the previously mentioned limitations of the GIL. Distributed frames can take
advantage of this speedup, as long as they are thread-safe and they don’t access global variables of other processes.

Important: Distributed frames aren’t implemented in asyncframes v2.2. This feature is under active development
and will be added in a future release.

1.2.2 Parallel Programming using Frames

The following table summarizes the three types of parallelism of the previous section from a software engineering
perspective:

1.2. Parallel Programming with asyncframes 7

asyncframes Documentation, Release 2.2.0

Type of
parallelism Implementation

in
asyncframes

Perks Requirements

Blocking
operations

Parallel
speedup

Thread-
safety

Localized
memory

Cooperative
multitasking

Frame

Shared memory PFrame1 X X
Distributed
memory

DFrame2 X X X X

In the Frame Hierarchy Programming Model, parallelism is implemented according to the “concurrency by default”
paradigm. By default every frame is maximally parallel (DFrame), but the programmer can reduce the degree of
parallelism by employing restrictions. PFrames are like DFrames, but with the restriction of running on the same
process as their parent frame. Frames are like PFrames, but with the restriction of running on the same thread as their
parent frame.

The main advantage of the restriction model is that parallel software can be designed iteratively. The entire program
can first be designed using only Frames (except blocking operations, which should always be placed inside PFrames
or DFrames; see table). Once completed, the programmer can assure thread-safety of individual frames, promote them
to PFrames and rerun all unit tests. If the program still produces deterministic correct results (note that multithreading
can lead to non-deterministic errors, which only fail with a certain probability!), the programmer can assure individual
frames don’t access global memory of other processes and further promote them to DFrames.

Reasons to choose higher degrees of parallelism

In general it should be the goal of any frame hierarchy program to promote as many frames as possible to higher
degrees of parallelism. Only then can an optimized scheduler efficiently distribute frames across available threads and
processes in a transparent and scalable manner. Keep in mind that any PFrame can be executed on the same thread as
it’s parent frame if the scheduler decides that this is the most efficient thing to do. For example, if all other available
threads are busy. It can even execute different parts of a single frame on different threads. The fewer restrictions are
enforced, the more freedom is granted to the scheduler to efficiently parallelize a program.

How to make parts of a program singlethreaded

There are situations where multithreading should be avoided. For example, many user interface libraries, like Qt, are
strictly singlethreaded. By only using Frames to interact with the user interface, this restriction is satisfied. Program-
mers can still create PFrames or DFrames in response to a user interface event, for example to execute a computation-
ally expensive operation in parallel, as long as these parallel frames don’t directly access the user interface.

It’s important to note that asyncframes doesn’t use a master thread. Whenever an eventloop runs a Frame, this frame
will run on the thread that executed the EventLoop.run() command. However, this doesn’t mean that all Frames
always run on that same thread. If a Frame is created from a Pframe, it will run on whatever thread the Pframe was
running on when it created the Frame. This way, a frame hierarchy program can contain multiple serial parts that run
on different threads. For example, a program can utilize a singlethreaded user interface library and a singlethreaded
database library on different threads. Of course, these concepts also apply to processes if the frame hierarchy contains
DFrames.

1 PFrames require asyncframes v2.0 or above.
2 DFrames aren’t implemented in asyncframes v2.2. This feature is under development and will be added in a future release.

8 Chapter 1. Introduction

asyncframes Documentation, Release 2.2.0

How to disable multithreading entirely

When EventLoop.run() is called, asyncframes allocates multiple threads. The number of allocated threads can
be controlled with the num_threads parameter. By default asyncframes will allocate as many threads as there are
available hardware threads on the CPU. To run a program entirely singlethreaded, set the num_threads parameter
to 1. In this scenario, asyncframes will never run any other threads, even if PFrames or DFrames are used. This is
because in the restriction model PFrames are free to run on any available thread, but there is only on thread available.

1.2.3 Example

To illustrate the differences between Frames and PFrames, let’s run multiple counters in parallel using blocking
operations.

The following frame prints the result of a call to printfunc three times every 0.3 seconds after an initial delay:

@asyncframes.Frame
async def frame_counter(delay, printfunc, printfunc_args):

time.sleep(delay)
for _ in range(3):

time.sleep(0.3)
print(printfunc(*printfunc_args), end='', flush=True)

We also create a parallel frame with the same content:

@asyncframes.PFrame
async def pframe_counter(delay, printfunc, printfunc_args):

time.sleep(delay)
for _ in range(3):

time.sleep(0.3)
print(printfunc(*printfunc_args), end='', flush=True)

The frame count_using_frames creates three Frame-based counters, each starting 0.1 seconds after the previous
counter. Again, we also create a PFrame-based version, named count_using_pframes:

@asyncframes.Frame
async def count_using_frames(printfunc):

counters = [frame_counter(delay=0.1 * i, printfunc=printfunc, printfunc_args=(i,
→˓)) for i in range(3)]

await asyncframes.all_(*counters)
print()

@asyncframes.Frame
async def count_using_pframes(printfunc):

counters = [pframe_counter(delay=0.1 * i, printfunc=printfunc, printfunc_args=(i,
→˓)) for i in range(3)]

await asyncframes.all_(*counters)
print()

Let’s see what happens if we run three blocking counters using Frames. The first counter prints the character a, the
second one prints b and the third one prints c:

>>> loop.run(count_using_frames, printfunc=lambda i: "abc"[i])
aaabbbccc

As we learned in the previous section, Frames always run on the same thread as their parent frame. We don’t use any
PFrames, so that thread is the main thread (thread 0). Since we never call await inside frame_counter, the main
thread is blocked until the counter returns, before starting the next counter.

1.2. Parallel Programming with asyncframes 9

asyncframes Documentation, Release 2.2.0

We can visualize which thread each counter runs on, using the get_current_eventloop_index() function:

>>> loop.run(count_using_frames, printfunc=lambda i: asyncframes.get_current_
→˓eventloop_index())
000000000

Now let’s repeat the experiment using PFrames:

>>> loop.run(count_using_frames, printfunc=lambda i: "abc"[i])
abcabcabc

Each counter still blocks until it is done, but because we now create PFrame-based counters, asyncframes can distribute
them over individual threads in the thread pool:

>>> loop.run(count_using_frames, printfunc=lambda i: asyncframes.get_current_
→˓eventloop_index())
123123123

Note that the used threads are threads 1 through 3. That’s because thread 0 is used to run the parent frame
(count_using_pframes).

Finally, let’s restrict the thread pool to three threads:

>>> loop.run(count_using_frames, printfunc=lambda i: "abc"[i], num_threads=3)
abababccc

We notice that the first two counters run in parallel, but the third one is blocked. Let’s see which threads were involved
in this behavior:

>>> loop.run(count_using_frames, printfunc=lambda i: asyncframes.get_current_
→˓eventloop_index(), num_threads=3)
121212111

We use 3 threads. Thread 0 runs the parent frame (count_using_pframes), threads 1 runs the a counter and
thread 2 runs the b counter. The c counter can’t start until a thread becomes available. The first thread to become
available is thread 1, after the a counter finishes.

Note: We used blocking sleep operations here for illustrative purposes only. In production code one should use
await asyncframes.sleep() instead.

1.3 API

1.3.1 asyncframes module

class asyncframes.all_(*awaitables)
Bases: asyncframes.Awaitable

An awaitable that blocks the awaiting frame until all passed awaitables have woken up.

Parameters awaitables (Awaitable[]) – A list of all awaitables to await.

class asyncframes.animate(seconds, callback, interval=0.0)
Bases: asyncframes.Event

An awaitable event used for periodically calling a callback function for the specified amount of time.

10 Chapter 1. Introduction

asyncframes Documentation, Release 2.2.0

Parameters

• seconds (float) – The duration of the animation.

• callback (Callable[float, None]) – The function to be called on every iteration.
The first parameter of callback indicates animation progress between 0 and 1.

• interval (float, optional) – Defaults to 0.0. The minimum time in seconds be-
tween two consecutive calls of the callback.

class asyncframes.any_(*awaitables)
Bases: asyncframes.Awaitable

An awaitable that blocks the awaiting frame until any of the passed awaitables wakes up.

Parameters awaitables (Awaitable[]) – A list of all awaitables to await.

class asyncframes.Awaitable(name, singleshot, lifebound)
Bases: collections.abc.Awaitable

An awaitable frame or event.

Every node in the frame hierarchy is a subclass of Awaitable. An awaitable has a __name__, a parent awaitable
(None, if the awaitable is the main frame), a list of child awaitables and a result, that gets set when the awaitable
finishes.

Parameters name (str) – The name of the awaitable.

remove()
Remove this awaitable from the frame hierarchy.

Returns

An awaitable event.

The remove event returns True once the awaitable has been removed or False if the request
was either canceled, or the awaitable had already been removed before.

Return type Event

removed
Boolean property, indicating whether this awaitable has been removed from the frame hierarchy.

class asyncframes.AbstractEventLoop
Bases: object

Abstract base class of event loops.

postevent(eventsource, event, delay=0)

run(frame, *frameargs, num_threads=0, **framekwargs)

static sendevent(eventsource, event, process_counter=None, blocking=False)

class asyncframes.Event(name, singleshot=False, lifebound=False)
Bases: asyncframes.Awaitable

An awaitable event.

Instantiate or overload this class to implement new events. Each type of event should be emitted by exactly one
event class. For example, key-up and key-down events should be implemented by two separate events. Events
represent leave nodes in the frame hierarchy.

Parameters

• name (str) – The name of the event.

1.3. API 11

asyncframes Documentation, Release 2.2.0

• singleshot (bool, optional) – Defaults to False. If True, removes the event after
it has been woken.

post(args=None, delay=0)
Enqueue an event in the event loop.

Parameters

• args (optional) – Defaults to None. Event arguments, for example, the progress value
on a progress-update event.

• delay (float, optional) – Defaults to 0. The time in seconds to wait before post-
ing the event.

send(args=None)
Dispatch and immediately process an event.

Parameters args (optional) – Defaults to None. Event arguments, for example, the
progress value on a progress-update event.

asyncframes.find_parent(parenttype)
Find parent frame of given type.

Recursively search the frame hierarchy for the closest ancestor of the given type.

Parameters parenttype (type) – The frame class type to search for.

Returns The closest ancestor of type parenttype or None if none was found.

Return type Frame

class asyncframes.Frame(startup_behaviour=<FrameStartupBehaviour.delayed: 1>,
thread_idx=None)

Bases: asyncframes.Awaitable

An object within the frame hierarchy.

This class represents the default frame class. All other frame classes have to be derived from Frame.

A frame is an instance of a frame class. Use the nested Factory class to create frames.

The factory class is created by decorating a function or coroutine with @FRAME, where FRAME is the frame
class.

Example:

class MyFrameClass(Frame):
pass

@MyFrameClass
async def my_frame_factory():

pass

assert(type(my_frame_factory) == MyFrameClass.Factory)
my_frame = my_frame_factory()
assert(type(my_frame) == MyFrameClass)

Parameters

• startup_behaviour (FrameStartupBehaviour, optional) – Defaults to
FrameStartupBehaviour.delayed. Controls whether the frame is started immediately or
queued on the eventloop.

12 Chapter 1. Introduction

asyncframes Documentation, Release 2.2.0

• thread_idx (int, optional) – Defaults to None. If set, forces the scheduler to
affiliate this frame with the given thread.

free
Event – An event that fires just before the frame is removed.

ready
Event – An event that fires the first time the frame is suspended (using await) or goes out of scope.

Raises ValueError – If thread_idx is outside the range of allocated threads.

The number of allocated threads is controlled by the num_threads parameter of
AbstractEventLoop.run().

class Factory(framefunc, frameclassargs, frameclasskwargs)
Bases: object

A frame function declared in the context of a frame class.

Parameters

• framefunc (Callable) – The function or coroutine that describes the frame’s be-
haviour.

• frameclassargs (tuple) – Positional arguments to the frame class.

• frameclasskwargs (dict) – Keyword arguments to the frame class.

frameclass
alias of Frame

create(framefunc, *frameargs, **framekwargs)
Start the frame function with the given arguments.

Parameters framefunc (function) – A coroutine or regular function controlling the be-
haviour of this frame. If framefunc is a coroutine, then the frame only exists until the corou-
tine exits.

class asyncframes.FrameMeta
Bases: abc.ABCMeta

class asyncframes.FrameStartupBehaviour
Bases: enum.Enum

An enumeration.

delayed = 1

immediate = 2

class asyncframes.FreeEventArgs
Bases: object

Event arguments returned by the Frame.free event.

cancel
bool – Setting this to True, cancels the event.

asyncframes.get_current_eventloop_index()
Get the thread index of the currently active event loop.

Returns The thread index of the current event loop or None if no event loop is currently active.

Return type int

1.3. API 13

asyncframes Documentation, Release 2.2.0

exception asyncframes.InvalidOperationException(msg)
Bases: Exception

Raised when operations are performed out of context.

Parameters msg (str) – Human readable string describing the exception.

class asyncframes.hold
Bases: asyncframes.Event

An awaitable event used for suspending execution indefinitely.

Frames are automatically removed when the frame coroutine finishes. If you would like the frame to remain
open until it is removed, write await hold() at the end of the coroutine.

class asyncframes.PFrame(startup_behaviour=<FrameStartupBehaviour.delayed: 1>,
thread_idx=None)

Bases: asyncframes.Frame

A parallel Frame that can run on any thread.

Multithreading can be enabled for any frame by changing its base class to PFrame.

The only difference between Frame and PFrame is that instances of PFrame are not restricted to run on the
same thread as their parent frame.

Parameters

• startup_behaviour (FrameStartupBehaviour, optional) – Defaults to
FrameStartupBehaviour.delayed. Controls whether the frame is started immediately or
queued on the eventloop.

• thread_idx (int, optional) – Defaults to None. If set, forces the scheduler to
affiliate this frame with the given thread.

Raises ValueError – If thread_idx is outside the range of allocated threads.

The number of allocated threads is controlled by the num_threads parameter of
AbstractEventLoop.run().

Factory
alias of PFrame.Factory

class asyncframes.Primitive(owner)
Bases: object

An object owned by a frame of the specified frame class.

A primitive has to be created within the frame function of its owner or within the frame function of any child
frame of its owning frame class. If it is created within a child frame, it will still be registered with the closest
parent of the owning frame class.

Parameters owner (class) – The owning frame class.

Raises

• TypeError – Raised if owner is not a frame class.

• Exception – Raised if a primitive is created outside the frame function of its owning
frame class.

remove()
Remove this primitive from its owner.

Returns If True, this event was removed. If False the request was either canceled, or the event
had already been removed before

14 Chapter 1. Introduction

asyncframes Documentation, Release 2.2.0

Return type bool

class asyncframes.sleep(seconds=0.0)
Bases: asyncframes.Event

An awaitable event used for suspending execution by the specified amount of time.

A duration of 0 seconds will resume the awaiting frame as soon as possible. This is useful to implement non-
blocking loops.

Parameters seconds (float, optional) – Defaults to 0. The duration to wait.

1.3.2 asyncframes.asyncio_eventloop module

class asyncframes.asyncio_eventloop.EventLoop
Bases: asyncframes.AbstractEventLoop

An implementation of AbstractEventLoop based on asyncio.

1.3.3 asyncframes.glib_eventloop module

1.3.4 asyncframes.pyqt5_eventloop module

1.3. API 15

asyncframes Documentation, Release 2.2.0

16 Chapter 1. Introduction

CHAPTER 2

Indices and tables

• genindex

17

asyncframes Documentation, Release 2.2.0

18 Chapter 2. Indices and tables

Python Module Index

a
asyncframes, 10
asyncframes.asyncio_eventloop, 15

19

asyncframes Documentation, Release 2.2.0

20 Python Module Index

Index

A
AbstractEventLoop (class in asyncframes), 11
all_ (class in asyncframes), 10
animate (class in asyncframes), 10
any_ (class in asyncframes), 11
asyncframes (module), 10
asyncframes.asyncio_eventloop (module), 15
Awaitable (class in asyncframes), 11

C
cancel (asyncframes.FreeEventArgs attribute), 13
create() (asyncframes.Frame method), 13

D
delayed (asyncframes.FrameStartupBehaviour attribute),

13

E
Event (class in asyncframes), 11
EventLoop (class in asyncframes.asyncio_eventloop), 15

F
Factory (asyncframes.PFrame attribute), 14
find_parent() (in module asyncframes), 12
Frame (class in asyncframes), 12
Frame.Factory (class in asyncframes), 13
frameclass (asyncframes.Frame.Factory attribute), 13
FrameMeta (class in asyncframes), 13
FrameStartupBehaviour (class in asyncframes), 13
free (asyncframes.Frame attribute), 13
FreeEventArgs (class in asyncframes), 13

G
get_current_eventloop_index() (in module asyncframes),

13

H
hold (class in asyncframes), 14

I
immediate (asyncframes.FrameStartupBehaviour at-

tribute), 13
InvalidOperationException, 13

P
PFrame (class in asyncframes), 14
post() (asyncframes.Event method), 12
postevent() (asyncframes.AbstractEventLoop method),

11
Primitive (class in asyncframes), 14

R
ready (asyncframes.Frame attribute), 13
remove() (asyncframes.Awaitable method), 11
remove() (asyncframes.Primitive method), 14
removed (asyncframes.Awaitable attribute), 11
run() (asyncframes.AbstractEventLoop method), 11

S
send() (asyncframes.Event method), 12
sendevent() (asyncframes.AbstractEventLoop static

method), 11
sleep (class in asyncframes), 15

21

	Introduction
	Programming with asyncframes
	Parallel Programming with asyncframes
	API

	Indices and tables
	Python Module Index

